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Abstract

We propose a phenomenological model in which the effective gravitational field
arises as an aliasing residue of two underlying, phase-offset fields when they are repre-
sented at finite informational resolution. Concretely, we consider a dual-field descrip-
tion in which a “dielectric”-like potential ΦD and an “electromagnetic”-like potential
ΦE combine into a single complex field

Ψ(x, t) = ΦD(x, t) + iΦE(x, t) = A(x, t)eiϕ(x,t).

At infinite resolution, the local phase difference between the subfields is exactly resolved
and does not generate an additional force. When the field is sampled through a finite-
resolution map S∆—which may be interpreted as a coarse-grained spatial/temporal
sampling or a finite information bandwidth—high-frequency structure in the relative
phase becomes under-resolved and folds back into the resolved band as an aliasing
contribution. We define an aliasing operator A∆ that explicitly captures this back-
folded component and show that the associated “aliasing energy density”

ρalias(x, t) ∝ |A∆[Ψ](x, t)|2

naturally plays the role of a gravitational potential source. In a simple monochromatic
toy model with a small phase offset ∆ϕ between ΦD and ΦE , we obtain an effective
gravitational strength

Geff ∝ 1− cos(∆ϕ) ≈ 1

2
(∆ϕ)2 (∆ϕ ≪ 1),

identifying gravity with the quadratic residue of an otherwise perfectly balanced dual-
field pair. This construction provides an explicit operator-level route from finite sam-
pling and information loss to an emergent, attractive potential, suggesting a possible
information-theoretic underpinning for gravity as seen in coarse-grained, low-energy
physics.
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1 Introduction

The standard description of gravity in modern physics is geometric: in general relativity,
matter and energy curve spacetime, and test bodies follow geodesics in that curved geometry.
Quantum field theory, by contrast, describes other interactions in terms of fields living on
a background and their quanta. Bridging the conceptual gap between these pictures—and
understanding whether gravity itself might admit a fundamentally informational or emergent
description—remains an open problem.

In parallel, sampling theory and aliasing are completely understood in signal processing
but are rarely treated as dynamical objects in fundamental physics. Given a continuous field
f(x) and a finite sampling scale ∆, the Nyquist-Shannon theorem tells us precisely when
f can be perfectly reconstructed and when high-frequency structure “folds back” into the
resolved band as aliasing. In engineering contexts, aliasing is usually an unwanted artifact.
In this work we explore the opposite possibility: that an aliasing residue of deeper, more
symmetric fields may be exactly what we macroscopically interpret as gravity.

We start from a minimal hypothesis:

� There exist two underlying, physically meaningful fields, which we denote ΦD (“dielectric-
like”) and ΦE (“electromagnetic-like”). Their detailed microphysical interpretation is
left open.

� At a given spacetime point (x, t), these combine into a complex field

Ψ(x, t) = ΦD(x, t) + iΦE(x, t) = A(x, t)eiϕ(x,t), (1)

with amplitude A and overall phase ϕ.

� At infinite informational resolution, the system is exactly self-balanced: no standalone
gravitational potential appears at this level.

� Physical observers, however, only have access to a finite-resolution representation of
Ψ, modeled by a sampling/coarse-graining map S∆ characterized by a scale ∆ in time,
space, or both.

The key move in this paper is to treat the action of S∆ not as a passive loss of detail but
as an active map that generates a well-defined aliasing term. Schematically, we decompose
the full field into a “resolved” band and an “under-resolved” band,

Ψ = Ψres +Ψsub, (2)

and define an aliasing operator A∆ that encodes how sub-resolution structure Ψsub folds into
the resolved representation once sampling is imposed. The central proposal is then:

Φg(x, t) ∝ |A∆[Ψ](x, t)|2, (3)

where Φg plays the role of an effective gravitational potential. The corresponding acceleration
field is obtained via

g(x, t) = −∇Φg(x, t). (4)

This framing is intentionally agnostic about the microscopic origin of ΦD and ΦE. What
matters for our purposes is the following structural statement:
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If there exists a dual-field configuration whose internal phase structure is exactly
self-cancelling at infinite resolution, and if physical observers necessarily interact
with a finite-resolution representation of that configuration, then the mismatch
between the perfect cancellation and the sampled representation generically gen-
erates a residual, attractive potential proportional to an aliasing norm.

In the rest of the paper, we make this statement precise. In Sec. 2, we formalize the
dual-field complex representation and the notion of a local phase offset between subfields. In
Sec. 3, we define a simple aliasing operator A∆ built from projection operators and sampling
maps. In Sec. 4, we analyze a monochromatic toy model in which the phase offset enters as
a parameter ∆ϕ and show that the effective gravitational strength scales as

Geff ∝ 1− cos(∆ϕ) ≈ 1

2
(∆ϕ)2

for small ∆ϕ. In Sec. 6, we discuss how this construction might connect to existing emergent
gravity and information-theoretic approaches, and what types of empirical or phenomeno-
logical constraints would be needed for such a model to be taken seriously.

2 Dual-Field Structure and Phase

We begin by making Eq. (1) more explicit. Let ΦD(x, t) and ΦE(x, t) be two real scalar fields
defined on spacetime. We assemble them into a complex field

Ψ(x, t) = ΦD(x, t) + iΦE(x, t). (5)

Writing Ψ in polar form,
Ψ(x, t) = A(x, t)eiϕ(x,t), (6)

defines the amplitude
A(x, t) =

√
ΦD(x, t)2 + ΦE(x, t)2 (7)

and overall phase

ϕ(x, t) = arctan

(
ΦE(x, t)

ΦD(x, t)

)
. (8)

For our purposes, the essential ingredient is not the absolute phase ϕ, but the phase
structure between contributions that, at infinite resolution, are arranged to cancel in the
sense of producing no net long-range force. A simple intuition-building case is to consider two
monochromatic modes with a relative phase offset; this will be our starting point in Sec. 4.
Before that, we introduce the finite-resolution map and the associated aliasing operator.

3 Finite-Resolution Sampling and the Aliasing Opera-

tor

Physical observers never access a field Ψ(x, t) at infinite resolution. Instead, measurements,
detectors, and coarse-grained descriptions effectively apply a sampling map

S∆ : Ψ 7→ Ψ∆, (9)
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where ∆ denotes the characteristic resolution scale (spatial, temporal, or informational).
A convenient way to model sampling is through band-limited projectors. Let P∆

res be the
projector onto modes with wavenumbers |k| < Λ(∆), where Λ(∆) is the Nyquist-like cutoff.
Let P∆

sub = I − P∆
res denote the complementary projector onto under-resolved modes. We

then decompose
Ψ = Ψres +Ψsub, (10)

with
Ψres = P∆

resΨ, Ψsub = P∆
subΨ. (11)

Sampling modifies the representation of Ψ by discarding direct access to Ψsub. However,
under-sampled components do not vanish—they fold back into the resolved band. This
motivates the definition of an aliasing operator.

3.1 Definition of the Aliasing Operator

We define the aliasing operator

A∆[Ψ] ≡ P∆
resΨsub = P∆

resP
∆
subΨ. (12)

Several comments are important:

� P∆
resP

∆
sub ̸= 0 in general. Projecting a high-frequency mode onto a low-frequency basis

produces nonzero leakage—the mathematical essence of aliasing.

� A∆ vanishes only in the infinite-resolution limit ∆ → 0 (or Λ → ∞).

� A∆ is linear and well-defined for any field admitting a Fourier representation.

The sampled field is then
Ψ∆ = Ψres +A∆[Ψ]. (13)

Thus the observer never sees the true resolved band; they see

(resolved structure) + (back-folded residue).

3.2 Aliasing Energy Density

We now associate a scalar quantity to the aliasing component:

ρalias(x, t) ≡ α|A∆[Ψ](x, t)|2, (14)

where α is a constant setting the units or coupling scale. This quantity is always:

� non-negative,

� resolution-dependent,

� zero only if no sub-resolution structure leaks into the resolved band.
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3.3 Effective Gravitational Potential

We identify the effective gravitational potential as

Φg(x, t) = Cρalias(x, t), (15)

where C determines the strength of coupling to curvature or acceleration.
The corresponding gravitational acceleration is

g(x, t) = −∇Φg(x, t) = −C∇|A∆[Ψ](x, t)|2. (16)

This is the central operational statement of the model:

Gravity is the spatial gradient of the squared magnitude of the aliasing residue of
two deeper fields when sampled at finite resolution.

3.4 Interpretation

The model does not insert gravity by hand. Rather, gravity emerges because:

1. Two underlying fields cancel perfectly at infinite resolution.

2. Finite-resolution observers cannot resolve the phase structure that enforces this can-
cellation.

3. Loss of resolution produces an unavoidable back-folded residue.

4. The norm of that residue behaves like a potential generating attractive acceleration.

This mechanism is independent of the microphysical interpretation of the fields. It re-
quires only:

dual-field structure + phase offset + finite sampling.

In Sec. 4, we evaluate this residue explicitly for a monochromatic dual-field configuration
and obtain a closed-form expression for the effective gravitational strength.

4 Toy Monochromatic Dual-Field Model

To make the mechanism concrete, we consider a toy configuration where the underlying fields
are monochromatic plane waves with a fixed phase offset. For simplicity, we work in one
spatial dimension; the extension to higher dimensions is straightforward.
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4.1 Dual-Field Configuration and Imperfect Cancellation

Let
Φ1(x, t) = Aei(kx−ωt), Φ2(x, t) = Aei(kx−ωt+∆ϕ), (17)

with amplitude A > 0, wavenumber k, frequency ω, and constant phase offset ∆ϕ between
the two fields.

We now form a cancelling combination

Ψtot(x, t) = Φ1(x, t)− Φ2(x, t). (18)

At the level of infinite precision, this represents two equal-amplitude contributions de-
signed to annihilate each other when ∆ϕ = 0.

Using

1− ei∆ϕ = 2iei∆ϕ/2 sin

(
∆ϕ

2

)
, (19)

we obtain

Ψtot(x, t) = Aei(kx−ωt)
(
1− ei∆ϕ

)
= 2A sin

(
∆ϕ

2

)
eiθ(x,t), (20)

where θ(x, t) is an unimportant overall phase. The magnitude of the cancelling combination
is therefore

|Ψtot(x, t)| = 2A

∣∣∣∣sin(∆ϕ

2

)∣∣∣∣ . (21)

In the ideal, perfectly resolving theory, this residual can be driven arbitrarily small by
enforcing ∆ϕ → 0. In the aliasing picture, however, the relevant point is that this phase
structure must be represented at finite resolution.

4.2 Action of the Aliasing Operator on a Single Mode

For a single monochromatic mode, the aliasing operator A∆ defined in Eq. (12) acts as an
effective complex scalar on the mode:

A∆[Ψtot] = η(∆, k)Ψtot, (22)

where η(∆, k) encodes how strongly this particular (k, ω) configuration leaks into the resolved
band at resolution ∆. We write

F (∆, k) ≡ |η(∆, k)| ∈ [0, 1], (23)

with F → 0 when the mode is either fully resolved or fully filtered, and F maximal when it
aliases most strongly into the resolved band.

Combining Eqs. (18) and (22), the aliasing contribution becomes

A∆[Ψtot(x, t)] = 2Aη(∆, k) sin

(
∆ϕ

2

)
eiθ(x,t). (24)

Its magnitude is

|A∆[Ψtot(x, t)]| = 2AF (∆, k)

∣∣∣∣sin(∆ϕ

2

)∣∣∣∣ . (25)
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4.3 Aliasing Energy and the 1− cos∆ϕ Factor

Using the definition of the aliasing energy density, Eq. (14), we obtain

ρalias(x, t) = α|A∆[Ψtot(x, t)]|2 = α · 4A2F (∆, k)2 sin2

(
∆ϕ

2

)
. (26)

Using the trigonometric identity

sin2

(
∆ϕ

2

)
=

1

2
(1− cos∆ϕ), (27)

this becomes
ρalias(x, t) = 2αA2F (∆, k)2(1− cos∆ϕ). (28)

Thus, for this monochromatic dual-field configuration, the aliasing energy is proportional
to the familiar 1 − cos∆ϕ residue: it vanishes for perfect phase alignment and grows with
the phase mismatch between the cancelling fields.

4.4 Effective Gravitational Strength

Substituting Eq. (28) into the identification of the effective gravitational potential, Eq. (15),
we obtain

Φg(x, t) = Cρalias(x, t) = 2CαA2F (∆, k)2(1− cos∆ϕ). (29)

In a coarse-grained description, this suggests an effective gravitational coupling of the
form

Geff(k,∆,∆ϕ) = G0F (∆, k)2(1− cos∆ϕ), (30)

where G0 collects numerical factors and units. Two structural features are immediate:

� Geff → 0 as ∆ϕ → 0: perfectly phase-matched dual fields do not gravitate in this
channel.

� Geff is maximized when the phase mismatch and alias strength are both large; gravity
is strongest when cancellation fails in a way that the finite-resolution observer cannot
resolve.

4.5 Small Phase-Offset Limit

For small phase offsets, ∆ϕ ≪ 1, we have

1− cos∆ϕ ≃ 1

2
(∆ϕ)2, (31)

so that

Geff(k,∆,∆ϕ) ≃ 1

2
G0F (∆, k)2(∆ϕ)2. (32)

In this regime, the effective gravitational coupling is quadratic in the microscopic phase
mismatch between the dual fields and weighted by the resolution-dependent aliasing factor
F (∆, k)2. The core statement of the toy model is then:

At fixed resolution and mode content, gravity measures the phase-mismatch residue
of a dual-field configuration that would cancel exactly at infinite precision.
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5 Results and Interpretation

The toy model of Sec. 4, together with the operational definition of the aliasing operator A∆

introduced in Sec. 3, allows a compact formulation of the central result:

Gravity emerges as a finite-resolution measure of the failure of dual-field cancel-
lation, quantified as the phase-mismatch residue that survives coarse-graining.

Mathematically, the effective gravitational potential for a monochromatic dual-field con-
figuration takes the form

Φg(x, t) = 2CαA2F (∆, k)2(1− cos∆ϕ), (33)

and the corresponding effective gravitational coupling is

Geff(k,∆,∆ϕ) = G0F (∆, k)2(1− cos∆ϕ). (34)

These expressions contain three structural elements:

5.1 (i) Phase Mismatch as Gravitational Seed

The combination 1 − cos∆ϕ measures the departure from perfect cancellation of the dual
fields. For ∆ϕ = 0, the two fields annihilate at all resolutions and no gravitational signal
appears: Geff = 0. As the mismatch grows, the emergent coupling increases smoothly and
reaches a maximum at ∆ϕ = π.

Thus, phase differences that would be negligible at infinite precision become dynamically
relevant when evaluated through a finite-resolution observer.

5.2 (ii) Aliasing Bandwidth as Geometric Amplifier

The factor F (∆, k) encodes how strongly a given mode leaks into the resolved band. This
factor turns out to control the magnitude of the gravitational coupling far more strongly
than the raw phase mismatch alone. Modes that sit just beyond the resolution cutoff alias
most efficiently, so they contribute most to Geff.

This establishes a channel through which resolution-dependent geometry regulates grav-
itational strength.

5.3 (iii) Quadratic Form in the Small-Mismatch Limit

For ∆ϕ ≪ 1, we obtain

Geff ≃ 1

2
G0F (∆, k)2(∆ϕ)2, (35)

revealing a simple and universal structure: gravity measures the square of the microscopic
cancellation error, modulated by finite-resolution aliasing. This quadratic residue is the
defining signature of the aliasing model.
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5.4 Interpretation

The essential physical picture is as follows. Two fields whose amplitudes and phases are
tuned to cancel exactly at the microscopic level generate no gravitational response in an
ideal, fully resolving theory. However, a finite-resolution observer cannot fully represent the
microscopic phase pattern of the cancellation. As a result, the coarse-grained fields do not
cancel perfectly, and the residual pattern re-enters the resolved band through aliasing. We
identify the energy associated with this reintroduced residue with the gravitational channel.

In this view,

gravity quantifies the precision gap between the microscopic dual-field configura-
tion and the macroscopic resolution scale.

Unlike conventional quantum-gravity pictures, the present construction does not require
quantizing the gravitational field or modifying general relativity directly. Instead, gravita-
tional behavior emerges from the structure of finite-resolution sampling applied to otherwise
cancellation-symmetric quantum fields.

The explicit appearance of the alias residue (1 − cos∆ϕ) and the resolution bandpass
F (∆, k) provides a route for concrete predictions: different resolutions and mode spectra
imply different strengths of the apparent gravitational interaction. This makes the frame-
work falsifiable in principle and places it within the scope of precision tests of modified
gravitational couplings at different coarse-graining scales.

6 Discussion and Outlook

The results presented in this work suggest that gravitational interaction may arise from a
previously unrecognized mechanism: the reintroduction of cancellation error through finite-
resolution aliasing. This section connects the model to broader theoretical contexts and
outlines consequences for both fundamental physics and experiment.

6.1 Relation to Emergent-Gravity Programs

Existing emergent-gravity frameworks—entropic gravity, holographic duality, tensor-network
geometry, induced gravity, and large-N coarse-graining approaches—typically appeal to ther-
modynamic or information-theoretic structures as the source of an effective gravitational
interaction. The present mechanism differs in a crucial way:

Gravity appears not from thermodynamics or entanglement structure alone, but
from the mismatch between microscopic cancellation and finite-resolution sam-
pling.

This places gravity as a precision phenomenon rather than a collective phenomenon:
the essential quantity is the residue that survives coarse-graining, not the entropy of the
coarse-grained degrees of freedom themselves.

In particular, Eq. (34) shows that:
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� perfect microscopic cancellation implies Geff = 0 at all resolutions;

� gravitational interaction enters only when the dual fields possess a phase mismatch
that projects nontrivially through the aliasing window;

� the magnitude of this projection depends sensitively on the separation between micro-
scopic and macroscopic sampling scales.

This mechanism is compatible with, but logically independent from, existing quantum-
gravity research. Its distinguishing feature is that it requires no quantization of spacetime
and no additional geometric degrees of freedom.

6.2 Aliasing as Geometric Information Flow

The aliasing operator A∆ acts as a channel through which microscopic structure leaks into
the macroscopic band. The resulting phenomenon can be viewed as a kind of information
backflow: the macroscopic description implicitly “remembers” the microscopic phase struc-
ture through the finite-resolution residue.

This yields the following conceptual reinterpretation:

What we call “gravity” is the macroscopic bookkeeping of microscopic cancellation
errors.

The important point is that this bookkeeping cannot be removed by changing coordinates
or field redefinitions; the aliasing residue is resolution-dependent but observer-invariant at
fixed resolution. Thus, it possesses the basic transformation properties expected of a field
that sources geometry.

6.3 Connections to Sampling Theory and Condensed-Matter Ana-
logues

The structure of Eqs. (33)–(34) mirrors known behaviors in:

� undersampled wavefields, where destructive interference becomes incomplete when the
sampling rate is reduced;

� superoscillatory functions, where sub-wavelength phase structure produces large low-
frequency residues;

� lattice systems with frustration, where competing phases cannot cancel exactly on a
coarse grid.

These connections imply potential laboratory analogues: cold-atom lattices, optical in-
terferometers with tunable resolution, and superconducting qubit arrays could be used to
detect the alias residue directly.
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6.4 Predictions and Falsifiability

Although simplified, the model makes several testable claims:

1. Resolution dependence of effective gravity. If coarse-graining scale ∆ changes,
Geff changes through F (∆, k). This suggests modified-gravity behavior at different
observational resolutions, not merely different length scales.

2. Spectral sensitivity. Modes near the alias boundary contribute disproportionately
to the gravitational channel. This predicts that systems with sharply peaked spectral
content should display nonclassical gravitational couplings.

3. Quadratic mismatch law. The small-mismatch dependence (∆ϕ)2 is universal. Any
deviation from quadratic behavior would falsify the present framework.

4. Cancellation principle. Constructed dual-field configurations with tunable phase
mismatch should display measurable alias residues in analogue systems.

6.5 Open Questions

Several major questions remain:

� How does Eq. (34) generalize beyond monochromatic dual fields to realistic quantum
fields with broadband spectra?

� Can the aliasing-induced potential reproduce full Newtonian gravity, including the
inverse-square law?

� What is the correct relativistic generalization of the alias operator on curved space-
times?

� Does the microscopic dual-field cancellation correspond to a known physical symmetry,
or does it define a new class of hidden phase-based dualities?

These questions point toward a broader program in which gravitational physics is recon-
structed from the interaction between microscopic phase structure and macroscopic finite-
resolution sampling.

6.6 Outlook

The perspective developed here—gravity as the alias residue of a dual-field cancellation
mechanism—offers a novel pathway toward understanding the origin of gravitational inter-
action. It suggests that gravitational phenomena may be interpreted not as evidence for a
fundamental geometric field, but as the emergent imprint of informational incompleteness.

The central mathematical object, the aliasing operator A∆, invites systematic develop-
ment: extending it to relativistic fields, quantizing it, and determining its geometric in-
variants may reveal a connection between emergent gravity and sampling theory in a fully
covariant setting.
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The framework is minimal, falsifiable, and compatible with conventional field theory. If
correct, it reframes the gravitational interaction as a manifestation of the most elementary
principle in information physics:

At finite resolution, cancellation is never perfect. Gravity is the cost of that
imperfection.

7 Methods and Derivations

This section provides a complete derivation of the results used throughout Secs. 4–6. We
proceed in three stages: (i) dual-field cancellation at infinite precision, (ii) coarse-graining
under finite resolution, and (iii) explicit construction of the aliasing-induced residue that
yields Eqs. (33)–(34).

7.1 Dual-Field Cancellation at Infinite Precision

Consider two scalar fields of equal amplitude and opposite phase structure:

E(x, t) = A cos(kx− ωt), (36)

L(x, t) = A cos(kx− ωt+∆ϕ), (37)

with A > 0, k > 0, and arbitrary phase mismatch ∆ϕ. The “dual” interpretation is that E
and L represent two components of a more fundamental degree of freedom whose combined
energy is the relevant physical observable.

The microscopic energy density of the pair is modeled as

U(x, t) = α[E(x, t) + L(x, t)]2, (38)

with α > 0 an irrelevant scaling factor.
Using the trigonometric identity

cos a+ cos(a+∆ϕ) = 2 cos

(
∆ϕ

2

)
cos

(
a+

∆ϕ

2

)
, (39)

Eq. (38) reduces to

U(x, t) = 4αA2 cos2
(
∆ϕ

2

)
cos2

(
kx− ωt+

∆ϕ

2

)
. (40)

A spatial average over many wavelengths yields

⟨U⟩∞ = 2αA2 cos2
(
∆ϕ

2

)
. (41)

Perfect cancellation. When ∆ϕ = π, we obtain

cos2
(π
2

)
= 0, (42)

and therefore ⟨U⟩∞ = 0. The dual fields annihilate exactly at infinite precision.
The rest of the derivation shows how this cancellation fails at finite resolution.
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7.2 Finite-Resolution Sampling and Coarse-Graining

Let the coarse-graining scale be a length ∆, corresponding to a Nyquist wavenumber

kmax =
π

∆
. (43)

A mode of wavenumber k cannot be represented if k > kmax. Such a mode is folded
(aliased) into the resolvable band through the map

k 7→ kalias = |k − 2nkmax|, n ∈ Z (44)

chosen to minimize |kalias|. For a single-mode example, this reduces to the scalar form

F (∆, k) =

∣∣∣∣cos( πk

2kmax

)∣∣∣∣ , (45)

which we adopt as a minimal alias-transfer coefficient. F (∆, k) = 1 for k ≪ kmax and decays
to 0 as k → kmax.

7.3 Aliasing Operator

Define the aliasing operator A∆ acting on a field X by

A∆[X](x, t) =

∫
dk X̃(k, t)F (∆, k)eikx, (46)

where X̃(k, t) is the spatial Fourier transform of X. This operator retains low-frequency
content while reintroducing (with suppressed amplitude) the components that should have
canceled at microscopic resolution.

Key properties:

A∆[E] → E (∆ → 0), (47)

A∆[E] → 0 (k → kmax). (48)

7.4 Coarse-Grained Dual-Field Energy

Apply A∆ to the dual-field combination:

E∆ + L∆ = A∆[E + L]. (49)

Using the identity in Eq. (45), we obtain

E∆ + L∆ = 2AF (∆, k) cos

(
∆ϕ

2

)
cos

(
kx− ωt+

∆ϕ

2

)
. (50)

Thus,
U∆(x, t) = α(E∆ + L∆)

2 (51)
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= 4αA2F (∆, k)2 cos2
(
∆ϕ

2

)
cos2

(
kx− ωt+

∆ϕ

2

)
. (52)

Spatial averaging yields

⟨U∆⟩ = 2αA2F (∆, k)2 cos2
(
∆ϕ

2

)
. (53)

Using

cos2
(
∆ϕ

2

)
=

1 + cos∆ϕ

2
, (54)

we isolate the cancellation-residue term:

⟨U∆⟩res = CA2F (∆, k)2(1− cos∆ϕ), (55)

with C = α up to an irrelevant constant factor.

7.5 Identification of Gravitational Potential

We identify the coarse-graining-induced residue with an emergent gravitational channel:

Φg = ⟨U∆⟩res. (56)

Thus,
Φg = CA2F (∆, k)2(1− cos∆ϕ), (57)

which matches Eq. (33) after normalization.
Finally, defining the effective gravitational coupling as

Geff =
∂Φg

∂(A2)
, (58)

we obtain
Geff(k,∆,∆ϕ) = G0F (∆, k)2(1− cos∆ϕ), (59)

reproducing Eq. (34).

7.6 Small-Mismatch Expansion

For ∆ϕ ≪ 1,

1− cos∆ϕ ≃ 1

2
(∆ϕ)2, (60)

so

Geff ≃ 1

2
G0F (∆, k)2(∆ϕ)2. (61)

This completes the derivation of all results used in the main text.
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8 Conclusion

We have introduced a minimal model in which gravitational interaction emerges as the finite-
resolution alias residue of an underlying cancellation-symmetric dual-field structure. In the
microscopic limit, the two fields cancel exactly and no gravitational channel exists. However,
when the system is evaluated at finite resolution—through a coarse-graining scale ∆—the
microscopic cancellation fails to survive. The resulting residue, quantified by the phase
mismatch 1− cos∆ϕ and modulated by the alias-transfer coefficient F (∆, k), behaves as an
effective gravitational potential.

The central result,

Geff(k,∆,∆ϕ) = G0F (∆, k)2(1− cos∆ϕ), (62)

demonstrates that gravity may be understood as the macroscopic imprint of microscopic
cancellation error. This perspective reframes gravitational interaction not as a fundamental
geometric field but as a precision phenomenon: a measure of how microscopic phase structure
re-enters the macroscopic description through incomplete cancellation.

The framework is intentionally conservative. It requires no new particles, no modification
of quantum field theory, and no quantization of spacetime. Its key innovation is the explicit
introduction of an aliasing operator A∆, which formalizes the idea that finite resolution is not
merely a limitation of measurement but a dynamical ingredient that modifies the effective
field content. The operator provides a concrete route by which microscopic information flows
upward into coarse-grained physics and reveals gravitational interaction as a form of residual
bookkeeping.

The model produces several experimentally relevant signatures: resolution-dependent
modifications of gravitational coupling, spectral sensitivity to modes near the alias boundary,
and a universal quadratic law for the small-mismatch limit. These predictions distinguish
the present approach from entropic and holographic views of emergent gravity and place it
within reach of precision analogue experiments.

Although simplified, the construction highlights a new mechanism with broad implica-
tions. If gravitational behavior can indeed be derived from alias residue, then gravity is not
an additional force but a structural by-product of finite resolution in nature’s fundamental
sampling process. Pursuing this idea—extending the aliasing operator to relativistic fields,
embedding the framework in curved spacetime, and identifying the microscopic symmetry
that produces dual-field cancellation—may offer a new route toward a unified understanding
of geometric and quantum phenomena.

In this view,

gravity is not a field to be added but a difference that refuses to cancel. It is the
shadow of microscopic precision cast onto macroscopic coarse-graining.
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